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Abstract

The problem of estimating attitude for actively maneuvering or passively rotating Space Objects (SOs)
with unknown mass properties / external torques and uncertain shape models is addressed. To account
for agile SO maneuvers, angular rates are simply assumed to be random inputs (e.g., process noise), and
model uncertainty is accounted for in a bias state with dynamics derived using first principles. Bayesian
estimation approaches are used to estimate the resulting severely non-Gaussian and multi-modal state
distributions. Simulated results are given, conclusions regarding performance are made, and future work
is outlined.

1 INTRODUCTION

The increasing number of manufactured on-orbit objects as well as improving sensor capabilities indicate
that the number of trackable objects will likely exceed 100,000 within the next several years [1]. Charac-
terizing these objects as completely as possible supports key objectives such as ensuring space operations
and spaceflight safety, implementing international treaties and agreements, protecting space capabilities, and
preserving national interests [2].

Characterizing the large population of non-spatially resolved active spacecraft, retired spacecraft, rocket
bodies, debris, and High Area to Mass Ratio (HAMR) objects necessarily involves both attitude and shape
estimation. While spatially unresolved Space Objects (SOs) cannot be directly imaged, attitude and shape
may be inferred by carefully examining their lightcurves. Lightcurves are temporally-resolved sequences of
photometric intensity measurements over one or more bandwidths. Because the observable reflected light
from an unresolved SO is a strong function of both its shape and attitude, estimating these parameters using
lightcurves can provide an avenue to determine both SO attitude and shape. This problem is traditionally
called ‘lighcurve inversion.’

While lightcurves have been used for at least 25 years to characterize spin states and shapes of asteroids
(for an introduction see [3, 4]), estimating the attitude states and shapes of manufactured SOs involves a
new set of challenges. New challenges addressed in this paper are 1) An active (agile) SO is often directly
controlling its attitude, meaning that torques acting on the SO are not necessarily zero (non-homogeneous
motion) and mass properties may not be known, motivating different dynamics assumptions. 2) Manufac-
tured SOs may be quite symmetric about at least one axis of rotation/reflection, leading to multiple possible
attitude estimate solutions and suggesting the use of non-Gaussian estimation approaches. 3) Shape models
must often be estimated, and analytical / experimental reflectance models are at best approximations. As
such, these shape models contain errors that need to be accounted for in the measurement function and
state space using carefully derived bias dynamics. Using estimated shape models without accounting for the
discrepancy with truth can often result in filter divergence, particularly under glint conditions. Combined,
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these challenges make SO attitude estimation using lightcurves a difficult endeavor that is unique from the
analogous asteroid problem, and provide the motivation for the approaches and contributions in this paper.

Hall et al. were the first to discuss lightcurve inversion as applied to SO attitude and shape determination
with many observations and results paralleling developed theory in the asteroid literature [5]. Approaches to
decouple the simultaneous SO attitude/shape estimation problem into separate attitude and shape estimation
problems have also been proposed [6]. For shape-independent attitude estimation, both differences in synodic
and sidereal periodicities and isolating facet orientations using glints have been investigated. Attitude-
independent shape estimation is approached using the solar phase angle to decouple attitude and shape.
Importantly, identifying differences in synodic and sidereal periodicities using a Fourier series decomposition
helped determine the spin-rate and axis of NASA’s IMAGE satellite after an on-board spacecraft anomaly
in 2005 [7].

Simulated lightcurve data using the Cook-Torrance [8] Bidirectional Reflectivity Distribution Function
(BRDF) model was first applied in a batch estimation framework to ellipsoidal SO models in geostationary
orbits [9]. The Ashikhmin-Shirley [10] BRDF has also been used to study estimation of specular reflectivity,
diffuse reflectivity, emissivity, and projected facet area [11]. The first use of lighcurves to sequentially
estimate SO attitude assumed a non-convex 300 facet model and simulated lightcurves using a combination
of Lambertian and Cook-Torrance (specular) BRDF models with an Unscented Kalman Filter (UKF) [12].
Linares et al. have used Multiple Model Adaptive Estimation (MMAE) to circumvent shape ambiguity
issues while concurrently estimating SO attitude using sequential estimation [13]. In this work, multiple
candidate models were concurrently assumed in individual sequential UKFs and fit metrics were used to
compute probabilities that a particular model best matches lightcurve observations.

Thus far, sequential lightcurve attitude estimation has typically used UKFs to circumvent the nonlinear-
ity inherent in the system dynamics and uncertainty propagation, as well as to avoid computing excessively
complicated partial derivatives. With UKFs, however, a potential shortcoming is evident. Using a specular
BRDF model such as Cook-Torrance, the measurement function is exceedingly nonlinear. Because of this
nonlinearity, and the potential existence of multiple solutions, the true a posteriori probability distribu-
tion functions (PDFs) may be quite non-Gaussian and potentially multi-modal, for which a UKF is not
particularly suited.

This effort explores the use of Bayesian sequential estimation to address several of the challenges in SO
attitude estimation from lightcurves. The primary benefits of using a Bayesian filter for a lightcurve-based
attitude estimator are that 1) no linearizations about nominal trajectories or expected measurements are
used, and 2) arbitrary PDFs may be point-wise approximated [14]. Because no linearizations are made and
arbitrary PDFs may be approximated, initial PDFs may be taken as uniform distributions spanning large
regions of the parameter space and multiple potential solutions for symmetric spacecraft may be identified.
This is particularly useful for attitude estimation, as attitude parameters are often bounded over specific
regions, allowing an initial uniform distribution to encompass all possible SO attitudes.

This paper is a summary of a companion journal paper [15]. The contributions of this effort are a)
the inclusion of mean angular rate and angular rate uncertainty to account for agile SO dynamics, b) the
derivation of shape model measurement bias dynamics based on a first principles approach to accounting for
shape model uncertainty, c) the use of a Particle Filter to successfully track actively maneuvering SOs, and
d) the use of a Particle Filter to estimate SO attitude in the presence of shape model uncertainty.

The remainder of this paper is organized as follows. The system dynamics, agile SO dynamics, measure-
ment equations, shape model bias dynamics, and fundamentals of Bayesian estimation are introduced. Next,
specific PF algorithms are introduced and discussed, the simulation is described in detail, and the results
for five separate test cases are presented. Lastly a summary is made and future work is suggested.

2 DYNAMICS AND MEASUREMENT MODELS

In this section, attitude dynamics are briefly discussed, followed by a detailed definition and discussion of
the lightcurve measurement model and shape model bias dynamics derivation. The section concludes by
combining the attitude and bias dynamics, introducing principles behind Bayesian estimation, and outlining
the specific implementation of the particle filter used in this paper.



2.1 Dynamics

The rotation from the Inertial frame I to the SO body frame B is defined using the attitude coordinate θB
I

.
The dynamics of θB

I
and the angular velocity ω are [16]

[ θ̇
B

I

Jω̇
] = [ B (θB

I
)ω

−ω × Jω + τ ] (1)

Here, B(θB
I
) is a kinematic mapping from the instantaneous angular rate vector to the instantaneous attitude

parameter time derivatives. For simplicity the body frame B of the SO is chosen such that J is diagonal with
diagonal elements J1, J2, and J3, where the principle axes of inertia satisfy the inequality J1 ≥ J2 ≥ J3 > 0. As
discussed in the introduction, the mass properties and torques acting on an SO are not necessarily known, so
it is necessary to make some assumptions to propagate (1). Fortunately, there are practical limits to angular
rates in operational spacecraft (e.g., sensors, actuation authority) that reduce the scope of this problem. In
this paper, it is assumed that J and τ are such that at any particular instant, the angular velocity ω can be
written as

ω = ωµ + δω (2)

where ωµ satisfies the equality ωµJ = −ωµ × Jωµ and δω ∼ N(0,Qω). It is assumed here that ωµ is known,
as with the majority of SOs (e.g., geostationary spacecraft, LEO spacecraft), mean rotation rates can be
assumed based on SO function (once a day for geostationary, once per orbit for weather satellites, etc.).
If ωµ is unknown, it can be assumed to be zero and the angular rate uncertainty can be increased. The
covariance matrix Qω from which δω is drawn can be chosen such that δω is representative of maneuvering
spacecraft capabilities (e.g., 0.1 deg/s, 0.5 deg/s). Using this approach, mean motion (like nadir pointing or
sun pointing) is captured, and motion about these nominal dynamics may be modeled as process noise. The
simplified dynamics using (2) are

θ̇
B

I
= B (θB

I
) (ωµ + δω) (3)

In addition to not requiring knowledge of SO mass properties or torques, an additional benefit of this model
reduction approach is that the dimensionality has ben reduced to only the attitude states.

2.2 Measurement Model

The observed reflected light of a rigid body is a function of several parameters. Before a measurement and
error model may be constructed, reflection geometry and the fundamental principles behind shape models
and BRDFs bear discussion. Figure 1(a) describes the inertial geometry of the SO, Observer, and Sun, and
figure 1(b) depicts the geometry of the light reflection problem for a point on the surface of a rigid body.

I
î1
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Figure 1: Inertial / local observation geometries and shape model visualization



The unit vector ŝ points toward the light source (the sun), v̂ points towards the observer, n̂ is the normal

vector of the surface at point P (where P is located at p), ĥ is the bisector between ŝ and v̂, B ∶ {b̂1, b̂2, b̂3}
is the body frame, and I ∶ {̂i1, î2, î3} is the inertial frame.

As outlined in the Introduction, the majority of shape models used in the empirical asteroid lightcurve
inversion literature are convex facet shape models [17, 18, 19]. Further, if the shape of an SO is reasonably
well known (perhaps from mechanical drawings), a batch estimation process may conceivably estimate the
surface material reflectance properties, yielding a potentially non-convex shape model. Largely following the
notation of Hall et al. [5] and making body-frame coordinates explicit, for a general (convex or nonconvex)
facet shape model, For facet shape models, the apparent magnitude of over wavelengths Λ is written as

M(θB
I
, s,v,p) = −2.5 log10

⎧⎪⎪⎨⎪⎪⎩

1

vTv
∫

Λ
Is(s, λ)

⎛
⎝

Nf

∑
i=1

Ai,visρi(Bŝ,Bv̂;Bn̂i,pi, λ)
⎞
⎠

dλ

⎫⎪⎪⎬⎪⎪⎭
− 26.74 (4)

where Is(s, λ) is the illumination of the light source (here, the Sun), Nf is the number of facets, Ai,vis is

the projected visible area of facet i, ρi(Bŝ,Bv̂;Bn̂i,pi, λ) is the weighted BRDF model with one or more
constituent BRDF models (e.g., Lambertian, Cook-Torrance, Ashikhmin-Shirley), Bn̂i is the facet normal
unit vector in the body frame, and pi contains the BRDF parameters for facet i. A notional illustration of
the differences between general-, nonconvex facet-, and convex facet-shape models is shown in Figure 1(c).

To construct an approximate measurement function in analytical form a BRDF function ρi must be
chosen for (4). Based on these empirically derived performance rankings [20, 21], either He-Torrance or
Cook-Torrance appear to be acceptable BRDF model candidates for SO specular lightcurve modeing efforts.
It remains a focus of future work to improve the physics behavior of BRDF models in general. Often two
or more reflectance models are affinely combined to account for both diffuse and specular reflectance. The
Cook-Torrance BRDF model [8] is used here for specular modeling and Lambertian reflectance is used for
diffuse modeling. The composite BRDF model is

ρi(Bŝ,Bv̂;Bn̂i, ξi, ai, ni,mi) = ξiRd(Bn̂i,Bŝ;ai) + (1 − ξi)Rs(Bŝ,Bv̂;Bn̂i, ni,mi) (5)

where ξi ∈ [0,1] is the convex mixing fraction parameter. In (5), for the ith facet ai ∈ [0,1] is the diffuse
albedo, ni is the index of refraction, and mi is the micro-facet slope parameter. In its final form, for each
distinct frequency bandpass Λj , the measurement function is expressed in apparent magnitude as

zk = hk(xk, k) +wk =MΛ,j(θBI (tk); s(tk),v(tk),p) + bj(tk) +wj,k (6)

The measurement zk ∈ Rm and the facet model parameters, n̂i and pi are assumed to be known (or esti-
mated), bj is the sensor bias, and wj,k is the instantiations of arbitrary measurement noise distribution. Past
work has suggested that for the AEOS 3.6m telescope, band-averaged I-band measurement uncertainties are
on the order of 0.3 mag, 3-σ [22]. Calibration, shape model, and BRDF errors are considered in the next
subsection.

2.3 Measurement Bias Dynamics Derivation

This section summarizes the results derived in [15]. Supposing that photometric observations are used to
measure apparent magnitudes over wavelengths Λj , the intensity measurement noise wk may be considered a
Gaussian white noise with wk ∼ N(0,Rk). Further, it is often the case that a photometric observations have
un-calibrated, potentially time-varying biases bj in measured apparent intensity. Additionally, the effect of
shape model uncertainty must be properly captured in the measurement function. When a shape model is
built, there are typically fixed (non-time varying) modeling errors. Even with manufacturing level shape
detail (such as can be obtained from CAD models), modeling errors in surface properties, the extended
effects of space weathering, and other effects (such as wrinkles in mylar surfaces) are rarely captured exactly.
Coupled with the fact that the timing and magnitude of glints contains significant information regarding
spacecraft attitude θB

I
, it is critical that the uncertainty in modeling parameters be quantified and accounted

for. If the model uncertainty is not considered, discrepancies between the observed intensity and the modeled



intensity can cause filters to diverge. For each measurement frequency and bandpass, an ideal apparent
magnitude measurement zi (without CCD bias or noise) may be computed using

zj =MΛ,j(θBI ; s,v,p) (7)

After significant manipulation (given in detail in [15]) it can be shown that the addition of a bias state
bm,j allows systemic uncertainty in the SO shape model to be accounted for. The dynamics of the bias state
can be written as

ḃm,j = ηḃm,j
(8)

with ηḃm,j
∼ N(0,Qḃm,j

), where

Qḃm,j
=
Nf

∑
i=1

⎧⎪⎪⎨⎪⎪⎩
(ωTµFi + (ȯ − ṙ)TGT

i )Qp,i (Gi(ȯ − ṙ) +Fiωµ) +Tr [FTi Qp,iFiQω]
⎫⎪⎪⎬⎪⎪⎭

(9)

with

Fi =
∂MΛ,j

∂pi∂θ
B

I

∣
i

B(θB
I
) and Gi =

∂MΛ,j

∂pi∂v
∣
i

Eq. (9) has two terms; the first incorporates the relative velocity of the object (ȯ − ṙ) as well as the known
angular motion ωµ with the facet parameter uncertainty described by Qp,i. Note that as the relative velocity
(ȯ − ṙ) or the nominal angular rate ωµ increase, the uncertainty in the shape model bias dynamics strictly
increases. The second term accounts for cross-coupling between angular rate uncertainty and facet parameter
uncertainty, and becomes appreciable when Qp,i and Qω are large. Critically, the shape mode bias dynamics
uncertainty strictly increases with both Qp,i and Qω. These observations provide important performance
guidelines. With an uncertain shape model, when the object has high nominal angular rates or is moving
fast relative to the observer, bias uncertainty increases and attitude estimation performance should decrease.
Naturally this is also the case when shape model facet uncertainty Qp,i or maneuver angular rates represented
by Qω are large. In the following subsection the bias dynamics above in Eq. (9) will be combined with the
rigid body dynamics.

2.4 Combined Bias and Rigid Body Dynamics

A straightforward combination of the simplified attitude dynamics (3) and shape model error bias dynamics
(8) provides the final form of the dynamics used in this effort. Taken together, the combined dynamics are

[ θ̇
B

I

ḃm
] = [ B(θB

I
)ωµ

0
] + [ B(θB

I
) 0

0 1
] [ δω

ηḃm
] (10)

The above equation assumes a single measurement channel (j = 1), though of course if multiple channels
exist then multiple shape model bias terms may be used. The discrete-time dynamics used in the Particle
Filter are generated using (10) and have the form

xk = fk−1(xk−1;ωµ) + vk−1 (11)

where xT = [ (θB
I
)T bm ] and vk−1 ∼ N(0,Qv,k−1).

2.5 Particle Filter Implementation

The Sample Importance Resampling (SIR) Particle Filter (also known as the Bootstrap Filter) and System-
atic Resampling algorithms described by Ristic et al. [14] are shown are used to generate results in this
paper. Further detail on the SIR Particle Filter and the Systematic Resampling algorithms may be found in
[23] and [24], respectively. The SIR Particle Filter is ideal for the application at hand as both the dynamics
(10) and measurement equation (6) are nonlinear, and there exists sufficient process noise in the system to
avoid sample impoverishment issues.



3 SIMULATION RESULTS & DISCUSSION

The impact of incorporating the reduced order attitude dynamics and shape model bias dynamics in the
filter are illustrated here using simulation. Five test cases (TCs) are investigated and summarized in Table
1. A baseline TC is given to demonstrate nominal PF performance when the true shape model is known
and the SO is not maneuvering. The purpose of TC 1 is to demonstrate PF behavior in the presence
of uncompensated shape model error while the SO maintains a stationary inertial attitude (dynamics are
‘none’). This TC 1 is expected to diverge, however it provides an excellent comparison point for the baseline
TC and TC 2, which incorporates the shape model bias state and dynamics defined in (8) (dynamics are
‘bias’). TC 3 includes the uncertainty terms in angular velocity and demonstrates successful tracking of a
maneuvering SO (dynamics are ‘ang. rate’). TC 4 illustrates how a maneuvering SO with a shape model
incorporating significant uncertainty may (crudely) have its attitude estimated (dynamics are ‘ang. rate &
bias’). All test cases use the GEOSAT spacecraft orbit and have a start time of December 17, 2009, 4:47:15
UT. Observations are simulated from the Advanced Electro-Optical System (AEOS) telescope in Maui, HI
for 350 seconds with a 5 second measurement frequency (71 measurements) and 0.3 mag (1-σ) apparent
magnitude noise. The example scenarios use 3-2-1 Euler angle parameters to describe the attitude state.
The baseline TC, TC 1, and TC 2 incorporate 3 deg (1-σ) initial state uncertainty and TC 3 and TC 4
include 10 deg (1-σ) initial state uncertainty in θB

I
. When shape model bias is included (TC 2 and TC 4),

an initial uncertainty of 0.5 mag (1-σ) is assumed. The baseline TC, TC1, and TC2 use 5,000 particles and
TC 3 and TC 4 use 10,000 particles. In all test cases, there is a ‘true’ shape model (defined in Table 2(a))
and an ‘estimated’ shape model with associated parameter uncertainty (Tables 2(b) and 2(c), respectively).
Both shape models define a cube with each side measuring 0.1m.

The measurement sequence, state estimation error, expected measurements, and measurement residuals
of the baseline TC are given in Figures 3, 2(a), and 2(b), respectively. The true attitudes are θ1 = 247.8 deg,
θ2 = 0 deg, and θ3 = 133.1 deg. As intended, the PF performs well, reducing uncertainty in θ2 and θ3 and
tracking the true attitude.

Table 1: Testcase Outline
Test Dynamics States Maneuver Est. Note
Case Model

Baseline None θB
I

None True Baseline

1 None θB
I

None Est. Incorrect model divergence

2 Bias θB
I

, bm None Est. Uncertain shape model

3 Ang. Rate θB
I

Slew True Agile SO

4 Ang. Rate & Bias θB
I

, bm Slew Est. Agile SO, uncertain shape model

Table 2: True and Estimated Unique Cube Shape Model Parameters

(a) True Shape Model Parameters

Face A ξ a m
(in B) (m) ( ) ( ) ( )

+Z 0.01 0.5 0.10 0.15
+Y 0.01 0.5 0.25 0.15
+X 0.01 0.5 0.40 0.15
-X 0.01 0.5 0.60 0.15
-Y 0.01 0.5 0.76 0.15
-Z 0.01 0.5 0.90 0.15

(b) Estimated Shape Model Param-
eters

Face A ξ a m
(in B) (m) ( ) ( ) ( )

+Z 0.01 0.4 0.25 0.25
+Y 0.01 0.4 0.30 0.25
+X 0.01 0.4 0.45 0.25
-X 0.01 0.4 0.65 0.35
-Y 0.01 0.4 0.80 0.35
-Z 0.01 0.4 0.95 0.35

(c) Estimated Shape Model Unc.

Face σÃ σξ̃ σã σm̃
(in B) ( ) ( ) ( ) ( )

+Z 0.01 0.2 0.1 0.2
+Y 0.01 0.2 0.1 0.2
+X 0.01 0.2 0.1 0.2
-X 0.01 0.4 0.1 0.2
-Y 0.01 0.4 0.1 0.2
-Z 0.01 0.4 0.1 0.2

The measurement discrepancy is illustrated in Figure 3 where the lightcurves for both the true and
estimated shape model, as well as the observed measurement sequence are plotted. As seen in Figure 3,
the models differ as much as 1.3 apparent magnitudes (in excess of the 3-σ measurement uncertainty) for



(a) Baseline state estimation error (estimate and 3-σ co-
variance bounds) for a nominal PF with no shape model
error.

(b) Baseline post-update measurement estimate and
residuals (with 3-σ bounds)

(c) TC 1 state estimation error (estimate and 3-σ covari-
ance bounds). In this case filter divergence is expected
because of shape model error.

(d) TC 1 post-update measurement estimate and resid-
uals (with 3-σ bounds)

(e) TC 2 state estimation error (estimate and 3-σ co-
variance bounds)

(f) TC 2 post-update measurement estimate and resid-
uals (with 3-σ bounds)

Figure 2: Baseline TC, TC 1, and TC 2 results. N = 5000 particles

sustained periods of time. In 2(c) the state error diverges at t = 225s and the covariance of the PF reduces
to unrealistically small values.



For TC 2, as shown in Figure 2(e), the PF estimate does not diverge and, despite modeling errors, is able
to extract enough information from the measurement signal to improve the covariance bounds of the estimate.
As shown in the bias covariance of Figure 2(e), just as the differences between the true and estimated shape
models become large (see Figure 3), the computation of Qḃm accounting for model uncertainty produces
larger process noise inputs in the bias. This result supports directly supports a main contribution of this
paper: incorporating shape model parameter uncertainty in the shape model bias dynamics can mitigate the
deleterious effects of significant model uncertainty. TC 2 can also be directly compared to the baseline TC,
where it is clear that the price for having an uncertain shape model is increased state uncertainty.
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Figure 3: Baseline TC TC 1, and TC 2 measure-
ment sequence. Blue is the true lightcurve and
green is the lightcurve of the estimated model us-
ing the true attitude profile.

TC 3 endeavors to illustrate the utility of using the
reduced order dynamics given in (3). In this scenario,
the SO is maneuvering (as shown in Figure 4(a)) in ex-
cess of 20 deg for θ1 and 50 deg for θ3 over 350s. The
initial true state is the same as in test cases 1 and 2.
It is assumed for this test case (as well as test case 4)
that Qω = 1.02I deg2 /s2. The true and noisy apparent
magnitude of the maneuvering SO are shown in Figure
4(b). For this particular test case, estimation error and
error covariance are not plotted because the estimate be-
comes significantly non-Gaussian and multi-modal, re-
ducing the utility of such measures. Rather, the PF
particles at the final time (t = 350s) are shown in Figure
4(c). Note the multi-modal nature of the solution.

Immediately the non-Gaussian nature of the result
in Figure 4(c)is apparent, as well as the fact that the
PF with angular rate uncertainty dynamics was able to
successfully track the true state. A much larger space
of potential θB

I
values represent feasible estimated tra-

jectories, in addition to the truth state. In practice, a
careful balance between the assumed/possible angular rate uncertainty and desired accuracy must be chosen.

TC 4 incorporates both angular rate uncertainty and shape model estimate uncertainty in the dynamics
(using (10)) for the maneuvering SO case found in test case 3. Because of the significant uncertainty in both
the shape model and the angular rates, the regions of attitude space that the filter estimate encompasses
are quite large. Critically the true state (the star in Figure 4(d)) is included in the distribution produced by
the particle filter, so the combined approach is deemed successful.

4 SUMMARY

In this paper, lightcurve inversion approaches have been extended to agile, maneuvering SOs and cases with
shape model error and uncertainty. Operational SO assumptions are used to eliminate dependence on mass
properties and torque as inputs to the estimation process. A first-principles approach is used to derive
first-order dynamics of the shape model bias in apparent magnitude due to relative SO motion and shape
model uncertainty.

Several test cases are presented and discussed that demonstrate the utility of the individual and combined
contributions of the approaches presented in this paper. First, the results show that incorporating shape
model parameter uncertainty in the shape model bias dynamics can mitigate deleterious effects of significant
shape model uncertainty. By linking model uncertainty through the dynamics, the particle filter automati-
cally increases the state uncertainty, which keeps the state estimate from diverging due to the modeling error.
When both satellite model error and slewing dynamics are introduced into the simulation, the non-Gaussian
nature of the result state error distribution is apparent, highlighting why the use of the particle filter is
advantageous. Even with the non-Gaussian error distribution, poor satellite model, and unknown attitude
maneuver, the particle filter with angular rate uncertainty dynamics was able to successfully maintain the
true state within the estimated error distribution.
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(a) Test case 3 & 4 true attitude and angular rate states
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(b) Test case 3 & 4 Measurement sequence

(c) Test case 3 Particle Filter at tf = 350s. Grey
dots are pre-measurement particles, black dots are post-
measurement particles, and the star is the true state.

(d) Test case 4 Particle Filter at tf = 350s. Grey
dots are pre-measurement particles, black dots are post-
measurement particles, and the star is the true state.

Figure 4: TC 3 and TC 4 results. N = 10000 particles
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